EC-MS Resources
FIND RESOURCES TO HELP YOU WITH EXPERIMENTS AND GET THE BEST OUT OF YOUR ANALYSIS INSTRUMENT
Videos - Spectro Inlets
Application & technical notes
Technical note #1
Technical note #2
Technical note #3
Technical note #4
Technical note #5
Technical note #6
Technical note #7
Technical note #9
Technical note #11
Technical note #16
Technical note #17
Application note #1
Application note #2
Application note #3
Application note #4
Data analysis code
We recommend the Spectro Inlets co-developed open-source package ixdat for data analysis. The ixdat package features easy data access and power plotting and analysis tools for combined techniques, such as ECMS. ixdat will get you up to speed on your ECMS data treatment in no time. The documentation for the package can be found here: https://ixdat.readthedocs.io/en/latest/
Below is an example of how we use the package for the treatment of EC-MS data to generate the figures in our application notes:
- CO-stripping: https://github.com/SpectroInlets/application-notes-data/tree/main/CO_strip_application_note
- Benchmarking and Gas Exchange: https://github.com/SpectroInlets/application-notes-data/tree/main/Benchmarking
Publications

Vollenbroek, J. C., Rodriguez, A. P., Mei, B. T., Mul, G., Verhaar, M. C., Odijk, M., & Gerritsen, K. G. F. (2023). Light-driven urea oxidation for a wearable artificial kidney. In Catalysis Today (p. 114163). Elsevier BV. https://doi.org/10.1016/j.cattod.2023.114163


Becker, H., Murawski, J., Shinde, D. V., Stephens, I. E. L., Hinds, G., & Smith, G. (2023). Impact of impurities on water electrolysis: a review. Sustainable Energy Fuels, 7, 1565–1603. doi:10.1039/D2SE01517J

Maselj, N., Jovanovski, V., Ruiz-Zepeda, F., Finšgar, M., Klemenčič, T., Trputec, J., Kamšek, A. R., Bele, M., Hodnik, N., & Jovanovič, P. (2023). Time and Potential‐Resolved Comparison of Copper Disc and Copper Nanoparticles for Electrocatalytic Hydrogenation of Furfural. In Energy Technology (p. 2201467). Wiley. https://doi.org/10.1002/ente.202201467

Đukić, T., Pavko, L., Jovanovič, P., Maselj, N., Gatalo, M., & Hodnik, N. (2022). Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chem. Commun., 58, 13832–13854. https://doi.org/10.1039/D2CC05377B

Raciti, D., & Moffat, T. P. (2022). Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry. The Journal of Physical Chemistry C. https://doi.org/10.1021/acs.jpcc.2c06207

Silvioli, L., Winiwarter, A., Scott, S., Castelli, I., Moses, P., Chorkendorff, I., Seger, B., & Rossmeisl, J. (2022). Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Au. The Journal of Physical Chemistry C, 126. https://doi.org/10.1021/acs.jpcc.1c10095

Krzywda, P. M., Paradelo Rodríguez, A., Benes, N. E., Mei, B. T., & Mul, G. (2022). Carbon-Nitrogen bond formation on Cu electrodes during CO2 reduction in NO3- solution. Applied Catalysis B: Environmental, 121512. https://doi.org/10.1016/j.apcatb.2022.121512

Oates, R. P., Murawski, J., Hor C., Shen, X., Weber, D. J., Oezaslan, M., Shaffer, M. S. P., & Stephens, I. E. L. (2022). How to Minimise Hydrogen Evolution on Carbon Based Materials?. Journal of The Electrochemical Society,169(5), 054516. https://iopscience.iop.org/article/10.1149/1945-7111/ac67f7/meta

Krempl, K., Hochfilzer, D., Cavalca, F., Saccoccio, M., Kibsgaard, J., Vesborg, P., & Chorkendorff, I. (2022). Quantitative Operando Detection of Electro Synthesized Ammonia Using Mass Spectrometry. ChemElectroChem, 9(6), e202101713. https://doi.org/10.1002/celc.202101713

Hochfilzer, Degenhart; Xu, Aoni; Sørensen, Jakob Ejler; Needham, Julius Lucas; Krempl, Kevin; Toudahl, Karl Krøjer; et al. (2022). Transients in Electrochemical CO Reduction Explained by Mass Transport of Buffers. ACS Publications. Collection. https://doi.org/10.1021/acscatal.2c00412

Krzywda, P. M., Paradelo Rodríguez, A., Cino, L., Benes, N. E., Mei, B. T., & Mul, G. (2022). Electroreduction of NO3− on tubular porous Ti electrodes. Catal. Sci. Technol. https://doi.org/10.1039/D2CY00289B

Scott, S. B., Sørensen, J. E., Rao, R. R., Moon, C., Kibsgaard, J., Shao-Horn, Y., & Chorkendorff, I. (2022). The low overpotential regime of acidic water oxidation part II: trends in metal and oxygen stability numbers. Energy Environ. Sci. https://doi.org/10.1039/D1EE03915F

Scott, S. B., Rao, R., Moon, C., Sørensen, J. E., Kibsgaard, J., Shao-Horn, Y., & Chorkendorff, I. (2022). The low overpotential regime of acidic water oxidation part I: The importance of O2 detection. Energy Environ. Sci. https://doi.org/10.1039/D1EE03914H

Tackett, B. M., Raciti, D., Hight Walker, A. R., & Moffat, T. P. (2021). Surface Hydride Formation on Cu(111) and Its Decomposition to Form H2 in Acid Electrolytes. The Journal of Physical Chemistry Letters, 12(44), 10936–10941. https://doi.org/10.1021/acs.jpclett.1c03131

Zheng, Y.-R., Vernieres, J., Wang, Z., Zhang, K., Hochfilzer, D., Krempl, K., Liao, T.-W., Presel, F., Altantzis, T., Fatermans, J., Scott, S. B., Secher, N. M., Moon, C., Liu, P., Bals, S., van Aert, S., Cao, A., Anand, M., Nørskov, J. K., Kibsgaard, J., Chorkendorff, I. (2021). Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy. https://doi.org/10.1038/s41560-021-00948-w

Moriau, L. J., Hrnjić, A., Pavlišič, A., Kamšek, A. R., Petek, U., Ruiz-Zepeda, F., Šala, M., Pavko, L., Šelih, V. S., Bele, M., Jovanovič, P., Gatalo, M., & Hodnik, N. (2021). Resolving the nanoparticles’ structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. In iScience (Vol. 24, Issue 2, p. 102102). Elsevier BV. https://doi.org/10.1016/j.isci.2021.102102

Huang, J., Scott, S. B., Chorkendorff, I., & Wen, Z. (2021). Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis, 11(20), 12745–12753. https://doi.org/10.1021/acscatal.1c03430

Krzywda, P. M., Paradelo Rodriguez, A., Benes, N. E., Mei, B., & Mul, G. (2021). Effect of electrolyte and electrode configuration on Cu‐catalyzed nitric oxide reduction to ammonia. ChemElectroChem. https://doi.org/10.1002/celc.202101273





Hochfilzer, D., Sørensen, J. E., Clark, E. L., Scott, S. B., Chorkendorff, I., & Kibsgaard, J. (2021). The Importance of Potential Control for Accurate Studies of Electrochemical CO Reduction. ACS Energy Letters, 6(5). https://doi.org/10.1021/acsenergylett.1c00496




Winiwarter, A., Boyd, M. J., Scott, S. B., Higgins, D. C., Seger, B., Chorkendorff, I., & Jaramillo, T. F. (2021). CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. ChemElectroChem, 8(1). https://doi.org/10.1002/celc.202001162

Scott, S. B., Engstfeld, A. K., Jusys, Z., Hochfilzer, D., Knøsgaard, N., Trimarco, D. B., Vesborg, P. C. K., Behm, R. J., & Chorkendorff, I. (2020). Anodic molecular hydrogen formation on Ru and Cu electrodes. Catalysis Science & Technology, 10(20). https://doi.org/10.1039/D0CY01213K





